PHYSICAL REVIEW E 77, 011305 (2008)

Michiko Shimokawa™ and Shonosuke Ohta
Department of Earth System Science and Technology, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
(Received 20 September 2007; published 18 January 2008)

By pouring a mixture of two types of grains into a large vertical cell with a narrow space, we discovered a
dual stratification pattern consisting of two different wavelengths at the upper and lower regions of the
resulting sand pile. In the formation of this pattern, we also observed an additional type of kink—a wave that
moves toward the top of the sand pile along the slope. The kink, herein called a trapped kink, is essential for
the formation of dual stratification patterns. Asymmetric probability distributions are obtained from measure-
ment of the position where the kinks are generated. We proposed a phenomenological model to describe the

Spontaneous formation of dual stratification patterns in a large quasi-two-dimensional sand pile

kink generation process. The results analyzed by this model agree with experimental distributions.

DOI: 10.1103/PhysRevE.77.011305

I. INTRODUCTION

Interesting patterns, such as the formation of a band of
regular stripes, a chaotic-regular structure, a petal pattern,
and a stratification pattern, are formed spontaneously [1-6]
when mixed grains are rotated in a cylinder [1-3] or a drum
[4,5] and poured into a narrow space [6]. The formation of
the above patterns is derived from the size segregation of
mixed grains in an avalanche. Size segregation is an unde-
sirable consequence for industrial processes, which require
that mixed grains poured from a hopper remain homoge-
neous. The physical property of size segregation, however, is
not yet fully understood, and its study is one of the develop-
ing topics in physics.

Patterns formed by pouring binary mixtures of grains into
a narrow space are recognized as interesting examples of size
segregation. When a binary mixture is poured into a narrow
vertical cell, we observe either a segregation or a stratifica-
tion pattern [6—10,12—14]. A segregation pattern occurs if the
mixture consists of large smooth grains and small rough
grains. In contrast, a stratification pattern occurs if the mix-
ture consists of large rough grains (LRGs) and small smooth
grains (SSGs). For both segregation and stratification pat-
terns, the angle of repose and the size of each grain deter-
mine the pattern [6—10,14]. In this study, we focus on strati-
fication patterns. A stratification pattern has alternating LRG
and SSG stripes. The process by which a single pair of
stripes is formed is as follows [8—10]: (1) a size segregation
occurs in the avalanche in which the upper and lower ava-
lanche layers are LRGs and SSGs, respectively; (2) the ava-
lanche stops with the formation of a kink, which is an uphill
wave of congestion generated at the bottom of the pile that
moves toward the top of the pile; and (3) the uphill motion of
the kink forms a distinct pair of layers. This process repeats
itself and a stratification pattern emerges. A kink is important
for the formation of this pattern. Many scientists have inves-
tigated kink generation [8—10,14]. It is reported that the kink
is generated only at the bottom of the pile, because the in-
cline of a sand pile decreases near the bottom [10]. We are
interested in the static regular pattern, as well as the periodic
motion of an avalanche and a kink.
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We discovered a dual stratification pattern with two peri-
odic stripes as shown in Fig. 1(b) and a different type of kink
by performing experiments with a large vertical cell. Surpris-
ingly, this kink is generated on a sand pile slope with a
nondecreasing incline.

1

50cm

[

<]

B
[

FIG. 1. (Color online) (a) Sketch of the experimental apparatus.
The width of the funnel d varies, which leads to changes in the flux.
The wooden board is shown as W. The distance from W is repre-
sented as y. (b) Dual stratification pattern with a large sand pile.
Wavelengths in lower region a and upper region b of the sand pile
are shown as \,=7.7mm and A,=3.8 mm (flux 0.37 g/s),
respectively.
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FIG. 2. Samples of (a) glass beads and (b) brown sugar. Tracers
of (c) dry silica gel and (d) white sugar.

In this paper, we describe and report our findings on the
self-organized dual stratification and, in particular, the devel-
opmental process of the kink. Preliminary results were re-
ported in [11]. The remainder of this paper is organized as
follows: Sec. II describes our experimental procedures; ex-
perimental results are presented in Sec. III; our proposed
physical model is described in Sec. IV; and our conclusion is
given in Sec. V.

II. EXPERIMENTAL PROCEDURES

We performed experiments using a vertical cell, as illus-
trated in Fig. 1(a). The vertical cell consists of two acrylic
sheets, each with a thickness of 0.5 cm. The width of the
vertical cell is 72.0 cm, and the vertical length is 56.0 cm.
The size we selected is approximately twice the conventional
size [6,7,9,12] used to study the details of a stratification
pattern. The two acrylic sheets are mounted parallel to one
another on a horizontal base plate. The space between the
two parallel sheets is 0.5 cm. During the formation of a large
sand pile, the foundation of the pile sometimes sinks and the
pile collapses. Therefore, a triangular wooden board W was
built to prevent the sand pile from collapsing. The wooden
board Wis 12.5 cm long and 8.0 cm high. The slope of W is
33¢, which is equal to the repose angle of the sand pile in the
stratification pattern. The upper layer of the stripe structure
consists of LRGs; further, there are only LRGs on the surface
of the sand pile. Therefore, to replicate a real sand pile, we
pasted LRGs on the surface of W. If the vertical distance y
from W is greater than 10 cm, we confirm that W does not
influence the dual stratification. Therefore, we performed ex-
periments at y=12.5*=2.5 cm. The binary mixture consisted
of tiny glass beads and brown sugar, corresponding to SSGs
and LRGs, respectively, as shown in Figs. 2(a) and 2(b). The
diameter of each glass bead was 0.1 mm, while the brown
sugar grains ranged from 0.2 to 0.8 mm in diameter. The re-
pose angles of the SSGs and LRGs were 27° and 38°, re-
spectively. For our experiments, the two types of grains are
uniformly mixed in the volume ratio of 1:1. Grains of dry
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silica gel and white sugar [refer to Figs. 2(c) and 2(d)] are
used as tracers to investigate the granular movement under
an avalanche. We added these tracers at a rate of 5% of the
mixture grains. Their physical properties, including diameter
and repose angle, are almost the same as those of the glass
beads and brown sugar grains. In our experiment, the influ-
ence of mixing in the tracers is negligible. The granular mix-
ture was poured through a funnel at the right edge of the
vertical cell, as shown in Fig. 1(a). The flux J of the mixture
is the total mass of grains poured per second, which depends
on the width d of the funnel. We used a SONY DCR-
VX2100 digital video camera to observe the dynamic behav-
ior of the stratification pattern. The shutter speed was 1/60 s
and the resolution was set to 640X 480 pixels. The videos
recorded with the camera were processed at intervals of
0.13 s. The experimental temperature was 20*2 °C, and
was performed at a room humidity of (41=4)% since spe-
cial care had to be taken to prevent cohesion due to moisture.

III. EXPERIMENTAL RESULTS
A. Dual stratification

Using a large-size vertical cell [as shown in Fig. 1(a)], we
discovered the dual stratification pattern shown in Fig. 1(b).
Although ordinary stratification is reported to have a single
wavelength [12,13], the dual stratification pattern has two
different wavelengths in the upper and lower regions of the
sand pile. The wavelength A, in the lower region and the
wavelength A, in the upper region were analyzed using
power spectra obtained from the fast Fourier transform algo-
rithm. For a flux /=0.37 g/s, A\, and A\, are 7.7 and 3.8 mm,
respectively. A dual stratification with two different wave-
lengths at the upper and lower regions (A,=2\,) is observed
in the present experiments using a large vertical cell.

B. Formation dynamics of dual stratification

A kink is observed in the emergence of the dual stratifi-
cation pattern. In past experiments with a small sand pile, a
kink was produced only at the bottom of the sand pile
[6-10,12—14]. In general, the incline of a sand pile decreases
near the bottom and the avalanche stops. As a result, a kink
occurs only at the bottom. On the contrary, in our experiment
with a larger sand pile, a kink is generated not only at the
bottom, but also on the slope. We term this phenomenon a
“trapped kink.” The trapped kink is essential in the formation
of the dual stratification pattern.

In our experiments, we investigated the generation of the
trapped kink using a digital video camera. The aforemen-
tioned mixture was poured from the edge of the vertical cell
and an avalanche formed. The binary mixture separates into
two layers of LRGs and SSGs as it moves down the slope.
According to the size segregation in an avalanche [14], the
LRGs concentrate at the upper layer of an avalanche, and the
SSGs at a lower layer. We call this region “two-layer flow.”

The LRGs in the upper layer are faster than the SSGs in
the lower layer; therefore, LRGs gather at the head of the
avalanche. We call this area, which is made up of only
LRGs, the “LRG head.” The LRG head accumulates with
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time. When a sufficient amount of LRGs gather at the head,
the LRG head stops growing and is solidified on the sand
pile slope. This solidified LRG head acts as a barrier and
blocks the movement of the two-layer flow. The two-layer
flow continues to collide with the solidified avalanche and
itself solidifies toward the top.

By the process described above, a trapped kink is formed.
A stripe of LRGs and SSGs is formed between the top of the
sand pile and the position where the trapped kink is gener-
ated. After the trapped kink arrives at the top, the next ava-
lanche occurs. Since the head of a solidified avalanche is too
steep, the next avalanche cannot stop on the slope and there-
fore stops at the bottom. Therefore, a normal kink is gener-
ated at the bottom and traverses upward. Meanwhile, a stripe
is formed going toward the top from the bottom of the sand
pile. After this normal kink passes up the slope, the surface
of the slope becomes nearly flat. The avalanche that occurs
after the normal kink can stop on the sand pile slope with a
its flat surface, and a trapped kink is generated again. The
above processes are repeated.

The frequency of kink generation in the upper region is
approximately twice that in the lower region. The uphill mo-
tion of a kink forms a pair of stripes with alternating LRGs
and SSGs. The lower wavelength A, is produced only by the
normal kink, while the upper wavelength A\, is produced by
the normal kink and the trapped kink. Therefore, N\, is ap-
proximately twice N,. The fairly constant repetition of the
trapped kink and the normal kink creates this dual stratifica-
tion pattern.

C. Asymmetric distribution of trapped kink generation

The trapped kink generation is important for the forma-
tion of dual stratification. The position € at which a trapped
kink is generated varies; it is not constant as shown in the
observations of trapped kinks in Fig. 3(a). In this section, we
investigate the probability distribution f(€) of €. Our aim is
to understand the trapped kink generation. By comparing
f(€) obtained from experiments in this section and proposed
models in Sec. IV, we will understand the trapped kink gen-
eration.

The position € is measured parallel to the sand pile slope,
and is defined as O at the top of the sand pile. The definition
of f(£) is

n

i) = NAC (1)
where 7, is the number of trapped kinks generated in a range
from €—A€/2 to €+A€/2, N is the total number of samples
N=2ny, and A{ is the step size. A transparent sheet is
pasted in the surface of the vertical cell. In the observation of
the trapped kink, points mark the positions € on the sheet.
Afterward, f(€) is determined by counting the points re-
corded on the sheet. In our experiments, N=250 and A¢
=1.18 cm.

The data shown in Fig. 3(a) were measured with J
=0.86 g/s. As seen in this figure, the characteristic feature of
the obtained distribution f(€) is its asymmetric profile. In
general, symmetric distributions such as Gaussians are de-
rived from merely random white noise; whereas, surpris-
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FIG. 3. Distribution f({) of position ¢ where a trapped kink is
generated. The vertical axis of (a) is a linear scale, while that of (b)
is logarithmic. Data at tail region can be fitted with the exponential
exp(—=y{), where y=0.17 (flux 0.86 g/s).

ingly, our distribution has nontrivial asymmetry. In this sec-
tion, we focus on the asymmetric profiles of f(£).

The behavior at €>¢€, is different from that at € <<¢,,
where € is the peak position of the distribution. At € > €, the
exponential function shown in Fig. 3(b) is the best-fitting
function, rather than a log-normal or logarithmic distribution.
Therefore, we assume

J€) ~ exp(= ¥0), ()

where the coefficient vy is 0.17 for flux J=0.86 g/s. The
Gaussian distribution is found to be the best-fitting function
for f(€) at € <{,.

It is important from a physical point of view to understand
the origins of these Gaussian and exponential functions. In
what follows, f(€) at various fluxes and vertical distances
from a wooden board is investigated. These results give us
good suggestions about the dynamical mechanism of trapped
kink generation.

1. Flux dependence

In this section, we focus on the distribution f(€) at various
fluxes. We measured data points at y=12.5*2.5 cm. Figure
4(a) shows f(£) for J=0.19, 0.59, and 1.15 g/s. These dis-
tributions have two common features. First, the peak position
{, increases with J. As shown in Fig. 4(b), €, increases in
proportion to J. Second, all distributions are asymmetric for
all J. Let f,(€) be the distribution at flux J. To evaluate these
asymmetric profiles qualitatively, we consider the following
transformation:

FA0) = a(f, e, (3)

where a(J)=f(£,(J))/f1(€y(J)) is a scaling parameter, and
' =a()[€-€(J,)]+€,(J). After the transformation, we rec-
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FIG. 4. (Color online) (a) Flux dependence of distribution f(€).
Data for flux /=0.19, 0.59, and 1.15 g/s are shown as open circles,
closed triangles, and open squares, respectively. (b) Flux depen-
dence of peak position €. (c) Flux dependence of transformation

parameter a. (d) Transformed results ]7(€ ) for each flux distribution

J0).

ognize the distribution f(¢) at J;=0.20 g/s as the standard
distribution [£,(€)=F,(€)].

We derive the transformation as follows: (1) the distribu-
tion f,(€) is horizontally shifted by —€,(J) so that it has its
peak at the origin; (2) the shifted distribution is expanded
(shrunk) vertically by multiplying it by a(J) such that we
have the same peak value as in the distribution with J
=0.19 g/s; (3) the distribution is shrunk (expanded) horizon-
tally for normalization; and (4) the distribution is shifted
again so that it has its peak at €=¢((J,).

These processes are applied to all distributions. Figure
4(c) shows the flux dependence a(J) used in the above trans-
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FIG. 5. Distribution f(€) at vertical distance y from wooden
board. Open circles are experimental data and solid line shows fit-
ting, which is Gaussian in (a) and drawn using Eq. (11) in (b) and
(c). y=(a)0, (b) 7.5%2.5, and (c) 12.5*=2.5 cm. (d) Degree of
asymmetry A of distribution f(€) at y=2.5*+2.5, 7.5%=2.5, and
12.5%£2.5 cm, where y is the vertical distance from the wooden
board (flux 0.10 g/s).

formation; a(J) increases with the flux. Figure 4(d) shows
the results of the above transformations. All distributions are
asymmetric, which agrees with f(€) in Fig. 4(d). In particu-
lar, these distributions are almost exponential for € > €(J,).
This confirms that all distribution functions are common for
a variety of fluxes.

2. Dependence on vertical distance from wooden board

In this section, we investigate the distribution f(€) for
various values of y, where y is the vertical position from the
wooden board W shown in Fig. 1(a). The value of y is de-
fined as O at the surface of W. The flux is 0.10 g/s. Figures
5(a)-5(c), show f(J) at y=0, 7.5+2.5, and 12.5+2.5 cm,
respectively.

As shown in the figures, €, decreases as y increases. To
understand this phenomenon, consider the following sce-
nario. Let H be the drop length of grains poured from a
funnel. The relation between H and y is H=H,—y/cos 6,
where H is the length with y=0 and 6, is the repose angle
of the sand pile. If H is large, the potential energy of the
grains is also large. Since the potential energy decreases with
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increasing y, €, also tends to decrease with increasing y.

To be specific, €,=—0.35y+15.64 at 0.10 g/s. We calcu-
late f(€) for y=0,2.5+2.5,7.5+2.5, and 12.5+2.5 cm un-
der the same conditions (i.e., the same H). Although the re-
sulting profiles are different, each €, is the same, thus
confirming that differences of €, are nonessential for trapped
kink generation.

Next, we focus on the profiles of f(€) with various values
of y. f(£) at y=0 is best fitted with a Gaussian distribution,
which is depicted as a solid line in Fig. 5(a). This result
indicates that random white noise causes the distribution at
y=0; whereas asymmetric distributions are obtained at y
>0, as shown in Figs. 5(b) and 5(c). In order to evaluate the
asymmetry quantitatively, we define and calculate the degree
of asymmetry of the distribution A(y) at 2.5, 7.5, and
12.5 cm as

A= f [f(£) - G()]de, (4)
0

where the Gaussian distribution G(€) is decided by fitting the
data at £ <€,+A{. In Fig. 5(d), A(y) increases with y for J
=0.10 g/s.

The above results show that y has a great influence on the
distribution profile. It is considered that A(y) indicates de-
gree of the interaction between an avalanche and the grains
underneath, and the degree increases with y. This means that
the distribution profiles depend on the ground condition,
which forms the foundation for the physical models in Sec.
Iv.

IV. PHYSICAL MODEL

In this section, we consider a phenomenological model
for trapped kink generation. Our trapped kink model, intro-
duced in Sec. IV A, predicts the position € where the trapped
kink is generated. The model tends to agree with the experi-
mental peak position €(; however, the model does not offer a
satisfactory account of the dynamics of trapped kink genera-
tion.

One of the reasons our model is lacking in this regard is
that it does not consider the interaction between an avalanche
and the grains underneath, which is important, based on re-
sults of Sec. III C. Therefore, we propose an improved model
in Sec. IV B, in which the interaction is considered. The
results show the same features as the experimental distribu-
tions for € > ¢, [as given in Fig. 3(b)].

Combining the two models mentioned above, we describe
a hybrid model in Sec. IV C. The distribution defined by this
model agrees with the experimental distribution.

A. Trapped kink model

Figure 6 shows images of the LRG head. The lower draw-
ings are schemata of the images shown above. Figure 6(a)
represents data at x(r) <€ before trapped kink generation,
where x(7) and € are the positions at the head of an avalanche
and at the onset of trapped kink generation, respectively. The
LRG head descends as an avalanche. Figure 6(b) is a photo-
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FIG. 6. (Color online) Snapshots of LRG head (a) when the
avalanche descends onto the sand pile slope and (b) when the
trapped kink is generated. Length of avalanche and LRG head are
shown as x and Ax, respectively. The position where the trapped
kink is generated is shown as €. Angles for the sand pile and head
of the avalanche are shown as gy and 6(z), respectively. Thickness
of avalanche is D (flux 1.64 g/s).

graph in which x(¢r)=¢ after a trapped kink is generated. At
that moment, the LRG head does not move and is stationary.
Comparing Figs. 6(a) and 6(b), the head angle 6(z) decreases
as time increases. From the geometric relationship shown in
Fig. 6, we find

0(t) = Ogr + arctan<2>, (5)
Ax

where 67, D, and Ax represent the repose angle of the sand
pile, the thickness of the two-layer flow, and the length of the
LRG head, respectively.

The following results were obtained from Ref. [13]: (1) D
is approximately constant in an avalanche; and (2) Ax(z) in-
creases in proportion to x(7). These data are measured as
follows. (1) We track an avalanche with the digital video
camera until a trapped kink is generated. (2) The obtained
movie data are transformed to photographs approximately
every 0.33 s by Windows Movie Maker. (3) By comparing
two successive photographs, the results, such as constant D
and the relation between Ax(r) and x(r), are investigated.

Equation (5) shows that an increase of Ax(r) causes a
decrease of 6(r). We measure 6(t)= 6, when a trapped kink is
generated by using snapshots as shown in Fig. 6(b). The
angle 07 is (38.4 = 1.4)°, which agrees with the repose angle
of the LRGs, 6;;. We conjecture that a trapped kink is gen-
erated when 6(t)= 6, . We name this conjecture the trapped
kink (TK) model. By applying the TK model and a substitu-
tion of Ax=ax and 6(t)= 6, in Eq. (5), we obtain

b
B o tan(ﬂLR - 0ST) '

For a flux of 0.86 g/s, D=0.7 cm, 07— Ogy=0; p— O57=5.4°,
and @=0.63. Inserting these values into Eq. (6), we obtain
€=L;=11.8*£2.6 cm. Therefore, the TK model results

(6)
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closely agree with the peak position €3=13.2 cm (obtained
from experiments as shown in Fig. 8).

Let us also consider the phenomena at 6(¢)= 6, . The idea
of the TK model is based on the formation process of a sand
pile. The phenomena occurring at the repose angle of 6, on
the pile are often compared to a phase transition. For slopes
in which 6(¢) < 6,3, no flow of sand can occur and the pile
appears to be a solid; whereas for 6(r)> 6,5, the surface
layers of the pile freely flow on the slope as a liquid. In other
words, the liquid pile at the surface transforms to a solid
state when 6(¢)= 6.

According to the above demonstration, we focus on the
states of the LRG head. At first, for 6(r) > 6, , the LRG head
cannot stop and descends as an avalanche (like a liquid).
Later, for 6(t)= 6, the LRG head changes from a liquid to a
solid state. In our experiments with a large sand pile, the
slope length is larger than that of previous experiments. Due
to the long slope, a large number of LRGs gather at the head
of the avalanche, which results in 6(f)=6,; and a solidified
LRG head.

B. Survival probability model

The TK model agrees with €, showing a Gaussian distri-
bution. The behavior at y=0, where f(£) is almost fitted with
a Gaussian distribution [as shown in Fig. 5(a)], is explained
by the TK model. The degree of asymmetry A of f(€), how-
ever, increases with y as shown in Fig. 5(d), which is not
explained by the TK model. Therefore, we need to consider
improved models.

A characteristic feature at y>0 is that the region at €
> {, follows an exponential distribution [see Fig. 3(b)]. Let
us focus on the exponential decay. The exponential decay is
explained by using a probability model. We consider a dis-
tribution with sample number N. By assuming that an ava-
lanche stops with probability A per unit length, the number
of avalanches that stop at length € are

NA(1-A)" "=

€_ . 0
UA_INH A)'=puq". (7)
where u=N/(1/A-1) and g=1-A. The value of ug® corre-
sponds to f(€). Equation (7) shows the exponential decay of
Sf(€) for €>€,. The dominant factor is ¢, which plays a key
role in trapped kink generation. The physical parameter g
=1-A is the probability that an avalanche continues to de-
scend. If we consider the stopping of the avalanche and the
generation of a trapped kink as the death of an avalanche, ¢
means the survival probability of the avalanches.

The flux dependence of ¢ is shown in Fig. 7(b), which is
obtained from experiments. This figure shows that g in-
creases with J and the fitting function is ¢=0.25J+0.65.

From results of Fig. 5, it is considered that the interaction
between an avalanche and the grains underneath has a great
influence on ¢. The interaction causes granular movements
under an avalanche, which is termed transient creeplike mo-
tion. In general, a creep motion shows the underlying granu-
lar movement in the flow of an avalanche [15] as shown in
Fig. 7(a). The transient creeplike motion is derived from the
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FIG. 7. (a) Sketch of transient creeplike motion, where 4 is the
vertical distance of the motion. (b) Flux dependence of survival
probability ¢. (c) Flux dependence of vertical depth h. Closed
circles and dotted lines in (b) and (c) show experimental data and
fitting lines, respectively.

force applied when an avalanche begins to stop, and is ob-
served until the avalanche stops.

Focusing on the creeplike motion before and after a
trapped kink is generated, the depth & in Fig. 7(a), which is
the region of this motion, is measured. The surface of the
slope is defined as h=0. We compare the image at 1 s before
a trapped kink is generated to the image at 1 s after genera-
tion. The granular mixtures include dry silica gel and white
sugar as tracers. The value of % is obtained from measure-
ments of the tracer positions before and after trapped kink
generation. Figure 7(c) shows that 4 increases according to
h=2.10J+2.06. The results of g=0.25J+0.65 and the above
relation between & and J yield ¢g=0.12h+0.4.

Given the linear relation of ¢ and 4, the transient creeplike
motion has a great influence on the survival probability q.
The creeplike motion causes the solidified avalanche, which
is shown in the TK model, to be unable to stop. For large 4,
the ground will be unstable due to the creeplike motion, and
grains under an avalanche will be easy to move and will slide
around, which corresponds to a large g. The survival prob-
ability (SP) model shows the effect of the transient creeplike
motion on trapped kink generation.
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C. Model for an asymmetric distribution

Combining the TK and SP models introduced in Secs.
IV A and IV B, respectively, our combined model clarifies
trapped kink generation and provides an asymmetric distri-
bution. In this section, we describe the formation of the hy-
brid model along with results that agree with the experimen-
tal data.

If there is no transient creeplike motion, a trapped kink is
generated when 6(r)=6,; however, according to the TK
model, an avalanche cannot stop at 6(¢)= 6, if the creeplike
motion occurs. Trapped kink generation occurs as follows:
(1) when 6(t)= 6,5, the LRG head is solidified; and (2) the
solidified LRG head stops when the creeplike motion disap-
pears.

First, consider step 1 mentioned above. The distribution
obtained from the TK model is Gaussian, yielding

1 ( (€’—LT)2)
/_eX -7 1 5 |
\1'277'0'2 P 20’2

where o is the variance and Ly is the value obtained from the
TK model. As mentioned earlier, the distribution at y=0 al-
most fits a Gaussian distribution, where trapped kink genera-
tion is described by only the TK model because there is no
creeplike motion at y=0.

We cannot disregard transient creeplike motion when y
>(0. Next, we consider step 2 as s(€), which represents the
transient creeplike motion under an avalanche. When 6(r)
=0, at €' and an avalanche stops at £ (£ >{’),

s(€) = yexp[- ¥(€ - €')], )

where exp(—7) corresponds to the survival probability g.
Equation (9) is based on the SP model.

The probability density distribution F(£), which is a com-
bination of #(€’) and s(£), is

(€)=

(8)

F({) = Jw de' o€ — €))L )s(€)
0

Y

+o0
— at’' o€ — ¢’
\’27T0’2fo ( )

r_ 2
><exp<— %)exp[— y€-4€")], (10)

where 0(€—€¢')=0 at £ <€’ and O(€—€')=1 at {>{'.

To confirm our conjecture, we compare the experimental
distribution f(€) with the model distribution F(f). Using Eq.
(10), the discrete equation

leepew

F(m) = \’m lz) 0(m I’l)
Y

Xexp(— %

is obtained, where a is the step size, ma=¢, and na=+¢'.
Equations (10) and (11) contain both the Gaussian term #({")
and the exponential term s(€), and s(f) plays a role as a
correction function for #(€').

)eXp[— Hm—n)a]  (11)
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FIG. 8. Distribution f(€) of position € where trapped kink is
generated. Result of TK model is shown as filled triangle,
11.8 = 2.6 cm. Peak value of distribution obtained from experimen-
tal result is 13.2+0.5 cm, which is almost the same as the result of
the TK model. The solid line is the fitting line by our hybrid model.
The parameters of this model are 0=2.40, y=0.17, and L;=11.8.
The line agrees with experimental data. The vertical axes of (a) and
(b) are linear and logarithmic, respectively (flux=0.86 g/s).

The number of solidified LRGs is small at € <{,, where it
is essential that the LRG head is solidified. Therefore, F(€)
at € <{, almost follows a Gaussian distribution, as seen in
Fig. 8(a). When ¢ > ¢, most of the LRG head is solidified
and the transient creeplike motion becomes essential for
trapped kink generation. Therefore, as shown in Fig. 8(b),
F({) at £>{, decreases according to an exponential distri-
bution. In response to these results, the variance o is deter-
mined by fitting f(€) at € <€y+Af with #(€"); likewise, 7y is
determined by fitting s(€) at €> €. Therefore, 0=2.40, Ly
=11.80, and y=0.17 for f(£) at J=0.86 g/s and Yy
=12.5+2.5 cm. The fitting curve F(£), which is obtained by
substituting the above parameters, is shown as a solid line in
Fig. 8. As shown in Fig. 8(a), F({) agrees with the experi-
mental distribution f(€).

Returning to Fig. 5, recall that the solid lines in the figure
represent Eq. (11), which agrees with experimental data. Pa-
rameters for Eq. (11) are shown in Table I. The distribution
when y=0 fits a Gaussian distribution, which is obtained by
determining  lim,,_, ./ (€). The Ilimit is derived from
lim,_,,.g=lim, . [exp(—y)]~0, which means the survival

TABLE 1. Parameters of Eq. (11) with various y.

y (cm) Ly (cm) o y
0 16.41 2.05 +00
7.5 13.02 1.29 0.9
12.5 11.14 0.93 0.5
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probability ¢ does not exist. In fact, when y=0, there is no
creeplike motion essential for g.

We have observed that g=exp(—7y) increases with y. For
large y, the grains under an avalanche easily collapse and
slide. Therefore, an avalanche finds difficulty stopping when
0(t)= 6, , indicating the increase of g with y. Our model of
Eq. (10) is therefore natural.

A variety of distributions obtained from experiments fit
our hybrid model, indicating that the following are essential
for trapped kink generation: (1) an avalanche is solidified in
0(t)= 6, x; and (2) the transient creeplike motion disappears.

V. CONCLUSIONS

From this study, we have discovered a dual stratification
pattern, as shown in Fig. 1(b), for which we have performed
experiments using a large vertical cell. The size of the verti-
cal cell is approximately twice that of previous experiments
[6,8,9,14], forging new ground in our field of study. The dual
stratification pattern has two different wavelengths at the up-
per and lower regions of the sand pile (\,=2.0\,).

We have also observed a “trapped kink” during the for-
mation of dual stratification patterns. The trapped kink is
generated on the sand pile slope, which in turn is essential
for the formation of a dual stratification pattern.

Asymmetric probability density distributions are obtained
from measurements of the position € at which the trapped
kink is generated. The typical feature is the exponential de-
cay exp(—yf) at £>€,, where € is the peak position of the
distribution (refer to Fig. 3). The distribution profiles depend
on distance y from the wooden board W [see Figs.
5(a)-5(c)], although the asymmetric profiles remain at a va-
riety of fluxes (see Fig. 4). The degree A of asymmetry be-
comes large with increasing y [see Fig. 5(d)]. In particular, at
y=0, the distribution almost follows a Gaussian distribution.

We consider two phenomenological models. One is the
trapped kink model, and the other is the survival probability
model.
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The value of 11.8*+2.6 cm obtained from the trapped
kink model agrees with the experimental value €,=13.2 cm
within experimental error (for J=0.86 g/s). This model as-
sumes that an avalanche is solidified when 6(¢) = 6, 4.

The survival probability model incorporates exponential
decay for €£>€,. The key factor g=exp(—7) describes the
probability that an avalanche continues to descend. For J
=0.86 g/s, y=0.17 is obtained through experimentation.
Figure 7 shows g>«J and hoJ. These results imply g h,
which further implies that transient creeplike motion for
grains under an avalanche has an impact on the exponential
decay.

Our proposed hybrid model, which is a combination of
the TK and SP models, as shown in Fig. 8, produces results
that agree with experimental distributions. Through our hy-
brid model, we propose a distribution function formed from
both Gaussian and exponential distributions.

In nature, numerous phenomena show asymmetric distri-
butions; however, it is difficult to completely understand
these phenomena. One cause of this difficulty is that each
interaction is too large to properly consider. In our experi-
ments, the interactions are collisions of each grain under an
avalanche and collisions between an avalanche and the
grains underneath. Using our hybrid model, some asymmet-
ric distributions may be fitted, and lead to a better under-
standing of complex physical properties in nature.

ACKNOWLEDGMENTS

We would like to thank H. Honjo, S. Sakaguchi, H.
Katuragi, H. Nakanishi, N. Mitarai, and M. Isobe for their
helpful suggestions, discussions, and comments; R. Baba for
his helpful programming; A. Nakahara for introducing pat-
tern formation in physics; and M. Homma for reviewing our
manuscript and helpful good suggestions. Our research was
sponsored by the Japan Society for the Promotion of Science
for Young Scientists.

[1] O. Zik, D. Levine, S. G. Lipson, S. Shtrikman, and J. Stavans,
Phys. Rev. Lett. 73, 644 (1994).

[2] K. M. Hill, A. Caprihan, and J. Kakalios, Phys. Rev. Lett. 78,
50 (1997).

[3] K. M. Hill, Nitin Jain, and J. M. Ottino, Phys. Rev. E 64,
011302 (2001).

[4] Hernan A. Makse, Phys. Rev. Lett. 83, 3186 (1999).

[5] I. Zuriguel, J. M. N. T. Gray, J. Peixinho, and T. Mullin, Phys.
Rev. E 73, 061302 (2006).

[6] H. A. Makse, S. Havlin, P. R. King, and H. E. Stanley, Nature
(London) 386, 379 (1997).

[7] Y. Grasselli and H. J. Herrmann, Granular Matter 1, 43 (1998).

[8] H. A. Makse, P. Cizeau, and H. E. Stanley, Phys. Rev. Lett. 78,
3298 (1997).

[9] H. A. Makse, R. C. Ball, H. E. Stanley, and S. Warr, Phys. Rev.
E 58, 3357 (1998).

[10] J. M. N. T. Gray and Y. C. Tai, in Physics of Dry Granular
Media, edited by H. J. Herrmann, J. P. Hovi, and S. Luding
(Kluwer Academic Publishers, Boston, 1997), p. 697.

[11] M. Shimokawa and S. Ohta, Phys. Lett. A 366, 591 (2007).

[12] J. P. Koeppe, M. Enz, and J. Kakalios, Phys. Rev. E 58, R4104
(1998).

[13] H. A. Makse and H. J. Herrmann, Europhys. Lett. 43, 1
(1998).

[14] Pierre Cizeau, Hernan A. Makse, and H. E. Stanley, Phys. Rev.
E 59, 4408 (1999).

[15] T. S. Komatsu, S. Inagaki, N. Nakagawa, and S. Nasuno, Phys.
Rev. Lett. 86, 1757 (2001).

011305-8



